首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated jovian conditions
Authors:Bryan M Karpowicz  Paul G Steffes
Institution:a School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0250, United States
b School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250, United States
Abstract:Detection and measurement of atmospheric water vapor in the deep jovian atmosphere using microwave radiometry has been discussed extensively by Janssen et al. (Janssen, M.A., Hofstadter, M.D., Gulkis, S., Ingersoll, A.P., Allison, M., Bolton, S.J., Levin, S.M., Kamp, L.W. 2005]. Icarus 173 (2), 447-453.) and de Pater et al. (de Pater, I., Deboer, D., Marley, M., Freedman, R., Young, R. 2005]. Icarus 173 (2), 425-447). The NASA Juno mission will include a six-channel microwave radiometer system (MWR) operating in the 1.3-50 cm wavelength range in order to retrieve water vapor abundances from the microwave signature of Jupiter (see, e.g., Matousek, S. 2005]. The Juno new frontiers mission. Tech. Rep. IAC-05-A3.2.A.04, California Institute of Technology). In order to accurately interpret data from such observations, nearly 2000 laboratory measurements of the microwave opacity of H2O vapor in a H2/He atmosphere have been conducted in the 5-21 cm wavelength range (1.4-6 GHz) at pressures from 30 mbars to 101 bars and at temperatures from 330 to 525 K. The mole fraction of H2O (at maximum pressure) ranged from 0.19% to 3.6% with some additional measurements of pure H2O. These results have enabled development of the first model for the opacity of gaseous H2O in a H2/He atmosphere under jovian conditions developed from actual laboratory data. The new model is based on a terrestrial model of Rosenkranz et al. (Rosenkranz, P.W. 1998]. Radio Science 33, 919-928), with substantial modifications to reflect the effects of jovian conditions. The new model for water vapor opacity dramatically outperforms previous models and will provide reliable results for temperatures from 300 to 525 K, at pressures up to 100 bars and at frequencies up to 6 GHz. These results will significantly reduce the uncertainties in the retrieval of jovian atmospheric water vapor abundances from the microwave radiometric measurements from the upcoming NASA Juno mission, as well as provide a clearer understanding of the role deep atmospheric water vapor may play in the decimeter-wavelength spectrum of Saturn.
Keywords:Jupiter  Atmosphere  Saturn  Atmosphere  Radio observations  Atmospheres  Composition  Spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号