首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Large-volume ultrafiltration for the study of radiocarbon signatures and size vs. age relationships in marine dissolved organic matter
Authors:BD Walker  SR Beaupré  ERM Druffel
Institution:a University of California - Santa Cruz, Department of Ocean Science, 1156 High St., CA 95064, USA
b Woods Hole Oceanographic Institution, Department of Geology and Geophysics, 266 Woods Hole Rd., Woods Hole, MA 02543-1050, USA
c Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry (CAMS), LLNL-L397, 7000 East Ave., Livermore, CA 94551, USA
d University of California - Irvine, Department of Earth System Science, 2212 Croul Hall, CA 92697-3100, USA
Abstract:In recent decades, tangential-flow ultrafiltration (UF) technology has become a primary tool for isolating large amounts of “ultrafiltered” marine dissolved organic carbon (UDOC; 0.1 μm to ∼1 nm) for the detailed characterization of DOC chemical composition and radiocarbon (Δ14C) signatures. However, while total DOC Δ14C values are generally thought to be quite similar in the world ocean, previous studies have reported widely different Δ14C values for UDOC, even from very similar ocean regions, raising questions about the relative “reactivity” of high molecular weight (HMW) DOC. Specifically, to what degree do variations in DOM molecular weight (MW) vs. composition alter its relative persistence, and therefore HMW DOC Δ14C values?In this study we evaluate the effects of varying proportions of HMW vs. low molecular weight (LMW) DOC on UDOC Δ14C values. Using concentration factor (CF) as a proxy for MW distributions, we modeled the retention of both OC and Δ14C in several very large CF experiments (CF >3000), from three depths (20, 670, and 915 m) in the North Pacific Subtropical Gyre (NPSG). The resulting DOC and Δ14C UF permeation coefficients generally increase with depth, consistent with mass balance trends, indicating very significant permeation of LMW, 14C-depleted DOC at depth, and higher recoveries of Δ14C-enriched, HMW DOC in the surface. In addition, changes in CF during sample concentration and ionic strength during sample diafiltration had very large and predictable impacts on UDOC Δ14C values.Together these results suggest that previously reported disparities in UDOC Δ14C values are reconciled by linked trends of Δ14C content vs. MW. At low CFs, UDOC samples have similar Δ14C values to total DOC. In contrast, UDOC samples collected at extremely high CFs (and after diafiltration) have more positive Δ14C values. We demonstrate that the observed relationships between UDOC Δ14C and CF derived from our data can directly explain offsets in all previously published UDOC Δ14C values for the NPSG. While CF is not traditionally considered in UF studies, our results indicate it can substantially influence the interpretation of UDOC 14C “age”, and thus reactivity, in the marine environment. In addition, our results indicate that CF can in fact be used as a proxy for average MW. We suggest that a variable-CF-UF approach, coupled with molecular-level Δ14C analyses, presents a new tool for studying relationships between molecular size, age, and “labile” DOC distributions in the ocean.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号