首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Forced obliquities and moments of inertia of Ceres and Vesta
Authors:BG Bills  F Nimmo
Institution:a Jet Propulsion Laboratory, Pasadena, CA 91109, USA
b Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA 95064, USA
Abstract:We examine models of secular variations in the orbit and spin poles of Ceres and Vesta, the two most massive bodies in the main asteroid belt. If the spin poles are fully damped, then the current values of obliquity, or angular separation between spin and orbit poles, are diagnostic of the moments of inertia and thus indicative of the extent of differentiation of these bodies. Using existing shape models and assuming uniform density, the present obliquity values are predicted to be 12.31° for Ceres and 15.66° for Vesta. Part of this difference is related to differing orbital inclinations; a more centrally condensed internal structure would yield more rapid spin pole precession, and larger obliquity. Time scales for tidal damping are expected to be rather long. However, at least for Vesta, current estimates of the spin pole location are consistent with its obliquity being fully damped. When the degree two gravity coefficients and spin pole orientations are determined by the Dawn spacecraft, it will allow accurate determination of the moments of inertia of these bodies, assuming the obliquities are damped.
Keywords:Asteroids  Dynamics  Asteroid Ceres  Asteroid Vesta  Rotational dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号