首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Estimate of the magnetic field of Mars based on the magnetic characteristics of the Yamato 000593 nakhlite
Authors:Minoru Funaki  Viktor Hoffmann  Naoya Imae
Institution:1. National Institute of Polar Research, 10‐3, Midori‐cho Tachikawa Tokyo 190‐8518, Japan;2. Institut für Geowissenschaften, Geophysik, Universit?t Tubingen, Sigwartstrasse 10, 72076 Tübingen, Germany;3. Department für Geo‐ und Umweltwissenschaften, Universit?t München, Germany
Abstract:Abstract— Yamato 000593, a nakhlite, was analyzed in terms of its magnetic record and magnetomineralogy. The natural remanent magnetization (NRM: 3.55–6.07 times 10?5 Am2/kg) was thermally demagnetized at ~320 °C, and it was unstable against alternating field demagnetization. Based on analyses of thermomagnetic curves, the temperature dependence of hysteresis parameters, and microscopic observations, the magnetic minerals mainly consist of magnetite (0.68 wt% of the sample, including ~5% Fe2TiO4) of less than 100 μm in size, associated with minor amounts of monoclinic pyrrhotite (<0.069 wt% of the sample) and goethite. Thermal demagnetization of NRM at ~330 °C is explained due to an offset of magnetization of antipodal NRM components of magnetite, whereas it is not due to a pyrrhotite Curie point. Large magnetite grains show exsolution texture with ilmenite laths, and are cut by silicate (including goethite) veins that formed along cracks. Numerous single‐domain (SD) and pseudo‐single‐domain (PSD) magnetite grains are scattered in the mesostasis and adjacent olivine grains. Moderate coercive forces of HC = 6.8 mT and HRC = 31.1 mT suggest that Yamato 000593 is fundamentally able to carry a stable NRM; however, NRM was found to be unstable. Accordingly, the meteorite was possibly crystallized at 1.3 Ga under an extremely weak or absent magnetic field, or was demagnetized by impact shock at 12 Ma (ejection age) on Mars. This finding differs from the results of previous paleomagnetic studies of SNC (shergottites, nakhlites, chassignites, and orthopyroxenite) Martian meteorites. The significant dipole magnetic field resulting from the molten metallic core was probably absent during the Amazonian Epoch (after 1.8 Ga) on Mars.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号