首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radial Deformations Induced by Groundwater Flow on Deep Circular Tunnels
Authors:S-W Nam  A Bobet
Institution:(1) School of Civil Engineering, Purdue University, West Lafayette, IN, U.S.A.
Abstract:Summary. The magnitude and distribution of ground deformations around a tunnel are often monitored during construction and provide key information about ground-support interaction and ground behavior. Thus it is important to determine the effects of different parameters on ground deformations to accurately and effectively evaluate what contributes to ground and support behavior observed during excavation. This paper investigates one such relation: the effects of seepage on radial deformations. A number of numerical analyses have been conducted with the following assumptions: deep circular unsupported tunnel, elastic ground, isotropic far field stresses, dry ground or saturated ground with steady-state water seepage. The analyses cover a wide range of tunnel sizes, effective stresses, and pore pressures. Results from the numerical simulations confirm previous analytical solutions for normalized radial deformations behind the face (i.e. on the tunnel side of the face) of a tunnel excavated in dry ground, and have been used to propose a new analytical formulation for normalized radial displacements ahead and behind the tunnel face for both dry and saturated ground with water flow. Water seepage substantially increases the magnitude and distribution of the normalized radial deformations ahead of the face and at the tunnel face, but does not change much the displacement distribution behind the tunnel face.
Keywords:: Deep tunnel  longitudinal deformation profile  groundwater  drainage  steady state  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号