首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equilibrium H/H fractionations in organic molecules: I. Experimental calibration of ab initio calculations
Authors:Ying Wang  Alex L Sessions  Robert J Nielsen  William A Goddard III
Institution:aDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA;bMaterials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA
Abstract:Carbon-bound hydrogen in sedimentary organic matter can undergo exchange over geologic timescales, altering its isotopic composition. Studies investigating the natural abundance distribution of 1H and 2H in such molecules must account for this exchange, which in turn requires quantitative knowledge regarding the endpoint of exchange, i.e., the equilibrium isotopic fractionation factor (αeq). To date, relevant data have been lacking for molecules larger than methane. Here we describe an experimental method to measure αeq for C-bound H positions adjacent to carbonyl group (Hα) in ketones. H at these positions equilibrates on a timescale of days as a result of keto-enol tautomerism, allowing equilibrium 2H/1H distributions to be indirectly measured. Molecular vibrations for the same ketone molecules are then computed using Density Functional Theory at the B3LYP/6-311G** level and used to calculate αeq values for Hα. Comparison of experimental and computational results for six different straight and branched ketones yields a temperature-dependent linear calibration curve with slope = 1.081−0.00376T and intercept = 8.404−0.387T, where T is temperature in degrees Celsius. Since the dominant systematic error in the calculation (omission of anharmonicity) is of the same size for ketones and C-bound H in most other linear compounds, we propose that this calibration can be applied to analogous calculations for a wide variety of organic molecules with linear carbon skeletons for temperatures below 100 °C. In a companion paper (Wang et al., 2009) we use this new calibration dataset to calculate the temperature-dependent equilibrium isotopic fractionation factors for a range of linear hydrocarbons, alcohols, ethers, ketones, esters and acids.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号