首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of contiguous shoreline type, distance from shore, and vegetation biomass on nekton community structure in eelgrass beds
Authors:Kenneth B Raposa  Candace A Oviatt
Institution:1. Graduate School of Oceanography, University of Rhode Island, South Ferry Road, 02882, Narragansett, Rhode Island
Abstract:Three factors affecting the structure of nekton communities 9fishes and decapod crustaceans) in eelgrass beds were identified and evaluated: contiguous shoreline type, distance from shore, and macrophyte biomass. Throw traps (1 m2) were used to sample eelgrass nekton at seven locations in Great South Bay (New York, U.S.) along Fire Island National Seashore from May through October 1995. Abundances ofGobiosoma ginsburgi, Apeltes quadracus, andOpsanus tau were significantly higher in eelgrass beds adjacent to salt marshes.Menidia menidia, Syngnathus fuscus, Pseudopleuronectes americanus, andPalaemonetes pugio were significantly more abundant in eelgrass adjacent to beaches. Regression analyses indicated thatSyngnathus fuscus, Pseudopleuronectes americanus, andAnguilla rostrata abundances were positively related to eelgrass biomass, andApeltes quadracus andGobiosoma ginsburgi abundances were highest at moderate levels of macroalgae biomass. The distance of an eelgrass bed from shore was also important. Species generally associated with salt marshes (Fundulus heteroclitus, Cyprinodon variegatus, Lucania parva, andPalaemonetes pugio) were more abundant in eelgrass near the marsh shore. Abundances ofApeltes quadracus, Syngnathus fuscus, Menidia menidia, Hippolyte pleuracanthus, andCrangon septemspinosa increased with distance from the shoreline. Shoreline type, distance from shore, and macrophyte biomass appear to affect the abundance and distribution of some nekton species. The effect of shoreline type may be related to the distribution of macrophyte biomass; the biomasses of eelgrass and macroalgae were significantly higher along beach and marsh shorelines, respectively. Explaining within-habitat variability and identifying microhabitat preferences for nekton will aid in the proper design of future studies and habitat restoration efforts.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号