首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On Hoyle's theory of the origin of the solar system
Authors:N Dallaporta  L Secco
Institution:1. Istituto di Astronomia dell'Universitá di Padova, Padova, Italy
Abstract:A quantitative re-formulation of Hoyle's theory on the formation of the solar system is attempted, according to a three-dimensional scheme based on the assumption that the original magnetic field of the star is a dipole field. This allows us to obtain analytic expressions for the main paraeters describing the different phases of the process. The protostar is assumed to evolve in gravitational contraction along the Hayashi track, along which, for a given value of the radiusR 0 depending on the total angular momentum, matter begins to be shed at the equator as a consequence of centrifugal instability. However, owing to the geometry of the dipole field and to Hoyle's assumption that, for a star with a convective envelope, the sign of the inward magnetic pressure determines whether the magnetic lines do wind up or not, it turns out that the magnetic coupling between the star and the disk formed at the equator starts only when the radius of the contracting star has reached the value ofR s=4/5R 0; and that the shedding of matter stops for a radius valueR d, depending on the strength of the magnetic field. One is thus able to calculate the total quantity of matter emitted at the solar equator and the distance reached by the rings thus formed as functions of the radius of the star, of the initial values of the magnetic field, of the total angular momentum and of the structural factors of the star. The quantitative results are discussed in order to see whether it is possible to deduce the main characteristics of the disk, from which the solar system should have originated, for reasonable values of these main parameters.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号