首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids
Authors:Ada Alamaru  Yossi Loya  Eran Brokovich  Ruth Yam  Aldo Shemesh
Institution:a Department of Zoology, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv 69978, Israel
b The Interuniversity Institute for Marine Sciences at Eilat (IUI), P.O. Box 469, Eilat 88103, Israel
c Department of Evolution, Systematics and Ecology, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
d Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
Abstract:We examined the utilization of carbon and nitrogen in two common Red Sea coral species (Stylophora pistillata and Favia favus), differing in colony morphology and polyp size, along a depth gradient down to 60 m. We describe the changes in C/N ratios and in the stable isotope composition of carbon and nitrogen of coral’s tissue and algal symbionts. We also measured the carbon isotopic composition of the lipid fraction extracted from both coral tissue and algal symbionts in order to reveal the changes in the carbon source utilized by the host coral for lipid synthesis.The results show that for both species, δ13C decreases by 7–8‰ in animal tissue, algal symbionts and in the lipid fractions as depth increases. However, in contrast to previous reports, the difference between δ13C values of coral tissue and algal symbionts does not increase with depth. δ15N values of coral tissue and algal symbionts in both species do not correlate with depth suggesting that the heterotrophic capacity of these corals does not increase with depth. δ13C values of tissue lipids were depleted by an average of not, vert, similar3.5‰ compared to δ13C of the entire tissue at all depths. δ13C values of algal lipids were depleted by an average of not, vert, similar2‰ compared to δ13C of the entire zooxanthellae at all depths, indicating high efficiency of carbon recycling between the two symbiotic partners along the entire gradient. The depletion of lipids is attributed to the fractionation mechanism during lipid synthesis. In addition, for both species, δ13C values of algal lipids were enriched compared with δ13C of tissue lipids. In S. pistillata, the difference between δ13C values of tissue lipids and algal lipids increased linearly with depth, indicating a change in the sources of carbon utilized by the coral for lipid synthesis below 20 m from an autotrophic to a heterotrophic source. However, in F. favus, this average difference was not, vert, similar4 times larger compared to shallow S. pistillata and was constant along the entire depth gradient, suggesting that F. favus uses heterotrophically-acquired carbon for lipid synthesis regardless of depth. Overall, F. favus exhibited enriched δ13C and δ15N values compared to S. pistillata along the entire gradient. We attribute these differences to both morphological differences (i.e. colony morphology, tissue thickness and polyp size) between the two species and to a higher heterotrophy/autotrophy ratio in F. favus at all depths. The C/N ratio in S. pistillata tissue decreased with increasing water depth whereas in F. favus it remained constant. This reflects a higher heterotrophic capacity in the large polyped F. favus, at all depths.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号