首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics and circulation regimes of terrestrial planets
Authors:PL Read
Institution:University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
Abstract:By the study of simple analogues, either in the form of simplified numerical models or laboratory experiments, considerable insights may be gained as to the likely roles of planetary size, rotation, thermal stratification and other factors in determining the principal length scales, styles of global circulation and dominant waves and instability processes active in the respective climate systems of Earth, Mars, Venus and Titan. In this review, we explore aspects of these analogues and demonstrate the importance of a number of key dimensionless parameters, most notably thermal Rossby and Rhines numbers and a measure of the dominant frictional or radiative timescale, in defining the type of circulation regime to be expected in a prototype planetary atmosphere subject to axisymmetric driving. These considerations help to place Mars, Venus, Titan and Earth into an appropriate context, and may also lay the foundations for predicting and understanding the climate and circulation regimes of (as yet undiscovered) Earth-like extra-solar planets. However, as recent discoveries of ‘super-Earth’ planets around some nearby stars are beginning to reveal, the parameter space determined from axisymmetrically forced prototype atmospheres may be incomplete and other factors, such as the possibility of tidally locked rotation and tidal forcing, may also need to be taken into account for some classes of extra-solar planet.
Keywords:Planetary atmospheres  Circulation regimes  Climate  Extra-solar planets
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号