首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shallow-level differentiation of phonolitic lavas from Sumaco Volcano,Ecuador
Authors:Email authorEmail author  Kenneth?W?W?Sims  Gene?M?Yogodzinski  Ricardo?D?Escobar  Sean?Scott  Patricia?Mothes  Minard?L?Hall  Patricio?Ramon
Institution:1.Department of Geosciences and Environment,California State University,Los Angeles,USA;2.Wyoming High Precision Isotope Laboratory, Department of Geology and Geophysics,University of Wyoming,Laramie,USA;3.Department of Geological Sciences,University of South Carolina,Columbia,USA;4.Instituto Geofisico,Escuela Politécnica Nacional,Quito,Ecuador
Abstract:Sumaco Volcano is located in the rear-arc of Ecuador and produces phonolitic alkaline lavas hosting a unique assemblage of minerals including haüyne and titanaugite. The most mafic lavas are picrobasalts that contain titanaugite as the primary mineral phase; the most evolved tephri-phonolite lavas contain titanaugite?+?anorthoclase?+?haüyne. Titanaugite forms at middle to deep crustal pressures, whereas haüyne is only stable at shallow depths in highly oxidizing conditions. The Sumaco mineral assemblages and geochemistry indicate that fractionation of the titanaugite- and haüyne-bearing assemblage took place over a range of pressures from 5 to 25 kbar (14–75 km), with at least 50% of differentiation taking place at shallow crustal levels. Minerals record multiple cycles of recharge and mixing accompanied by an increase in fO2 and sulfur concentration during differentiation. Mantle-like Sr and Nd isotope values (87Sr/86Sr = 0.70406–0.70423; 143Nd/144Nd = 0.512880–0.512913) indicate minimal crustal assimilation. Sumaco’s unique geochemical composition is not observed in the nearby volcanoes Antisana, Pan de Azucar or El Reventador suggesting that its unique magma source is confined to this volcano. The high temperature and sulfate-saturated conditions at shallow depths suggest that magma ascends rapidly to a shallow reservoir where the majority of crystallization and recharge takes place prior to eruption. An important conclusion of this research is that Sumaco does not represent typical rear-arc subduction processes, and caution should be used when using Sumaco as an end-member to evaluate across-arc processes in the Northern Volcanic Zone.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号