首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Contact metamorphism/hydrothermal alteration of Tertiary basalts from the Isle of Skye,northwest Scotland
Authors:John M Ferry  Laurence J Mutti  Gregory J Zuccala
Institution:(1) Department of Earth and Planetary Sciences, The Johns Hopkins University, 21218 Baltimore, MD, USA;(2) Department of Geology, Juniata College, 16652 Huntingdon, PA, USA;(3) Department of Geology, Arizona State University, 85287 Tempe, AZ, USA
Abstract:Alkali olivine basalts from Skye were simultaneously contact metamorphosed by Tertiary gabbro and granite intrusions and altered by the hydrothermal convection system that the plutons induced. Four metamorphic zones were mapped around the plutons. Furthest from the intrusions, in the primary olivine zone, metabasalts are composed of combinations of igneous olivine, augite, plagioclase, titaniferous magnetite, ilmenite, zeolites, gyrolite, sulfides, and chlorite-smectite intergrowths. Closer to the plutons, in the smectite zone, saponite and carbonate appear, primary olivine and gyrolite disappear, and zeolites decrease dramatically in abundance. Still closer to the plutons, in the amphibole zone, actinolite, edenite, chlorite, sphene, epidote, andradite, and quartz appear and saponite and chlorite-smectite intergrowths disappear. Along parts of the contact between gabbro and basalt, in the orthopyroxeneolivine zone, orthopyroxene, metamorphic olivine, and biotite appear and amphibole, chlorite, sphene, epidote, andradite, carbonate, and quartz disappear. Whole-rock chemical data indicate only minor change in the major-element chemical composition of the metabasalts during progressive metamorphism/hydrothermal alteration. Two-pyroxene eothermometry and various mineral-fluid equilibria suggest the range of peak temperatures attained in the metamorphic zones: orthopyroxene-olivine zone, sim900°1, 030° C; amphibole zone, sim400°–900° C; smectite and primary olivine zones, < 400° C. Mineralogical and oxygen isotopic alteration of the metabasalts were closely coupled: Basalts from the primary olivine zone with nearly unaltered igneous mineralogies have normal or near-normal wholerock delta 18O>+5permil (SMOW); mineralogically more altered basalts from the smectite zone have whole-rock delta 18O=+2 to +5permil; still more mineralogically altered basalts from the amphibole zone (with one exception) have delta 18O<+ 2permil; completely recrystallized hornfelses from the orthopyroxene-olivine zone have delta 18O<0permil. The principal mechanism of isotope exchange between basalt and metamorphic/ hydrothermal fluid probably was heterogeneous mineralfluid reaction.Metabasalts from the orthopyroxene-olivine zone are mineralogically fresh pyroxene hornfelses that record crystallization temperatures > 1,000° C yet have highly altered whole-rock oxygen isotope compositions, delta 18O<0%. The hornfelses chemically interacted with metamorphic/hydrothermal fluids either at very high temperatures or while they were heated to > 1,000° C or both. Their mineralogy, however, rules out significant water-rock interaction after they cooled below sim900° C. Hydrothermal convection on Skye was a two-stage process: (a) fluid flow through wall rocks initially was pervasive while they are heated; (b) fluid flow after the thermal peak in the wall rocks was sufficiently channelized that rocks such as those in the orthopyroxeneolivine zone were isolated from further fluid-rock interaction during all or almost all of the cooling history of the hydrothermal system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号