首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fractionation of silicon isotopes during biogenic silica dissolution
Authors:Mark S Demarest  Mark A Brzezinski  Charlotte P Beucher
Institution:aDepartment of Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA;bMarine Science Institute, University of California, Santa Barbara, CA 93106, USA
Abstract:Silicon isotopes have been investigated for their potential to reveal both past and present patterns of silicic acid utilization, primarily by diatoms, in surface waters of the ocean. Interpretation of this proxy has thus far relied on characteristic trends in the isotope composition of the dissolved and particulate silicon pools in the upper ocean, as driven by biological fractionation during the production of biogenic silica (bSiO2, or opal) by diatoms. However, other factors which may influence the silicon isotope composition of diatom opal, particularly post-formational aging and maturation processes, remain largely uninvestigated. Here, we report a consistent fractionation of silicon isotopes during the physicochemical dissolution of diatom bSiO2 suspended in seawater under closed conditions. This fractionation acts counter to that occurring during bSiO2 production and at about half its absolute magnitude, with dissolution discriminating against the release of the heavier isotopes of silicon at an enrichment factor εDSi–BSi of −0.55‰, corresponding to a fractionation factor α30/28 of 0.99945. The enrichment factor did not vary with source material, indicating the lack of a significant species effect, or with temperature from 3 to 20 °C. Thus, the dissolution of bSiO2 produces dissolved silicon with a δ30Si value that is 0.55‰ more negative than its parent bSiO2, an effect that must be accounted for when interpreting oceanic δ30Si distributions. The δ30Si values of both the dissolved and particulate silicon pools increased linearly as dissolution progressed, implying a measurable (±0.1‰) change in the relative δ30Si of opal samples whenever the difference in preservation efficiency between them is >20%. This effect could account for not, vert, similar10–30% of the difference in diatom δ30Si values observed between glacial and interglacial conditions. It is unlikely, however, that the inferred maximum possible change in δb30SiO2 of +0.55‰ would be manifested in situ, as a high mean percentage of dissolution would include complete loss of the more soluble members of the diatom assemblage.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号