首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New light on old problems of geology
Authors:M M Aksirov
Institution:(1) 5/102 Shogentsukova, 360000 Nalchik, Karbadian-Balcarian, Republic Russia
Abstract:In studying the problem of the origin and history of rotation of the Sun and the planets, the author has concluded that the present speed of the Earth's rotation has increased during geological history. Therefore, material (physical) evidence of this phenomenon should exist in the planet's interior. This conclusion is fully confirmed by the vast amount of information contained in the Earth's sedimentary cover.On this basis of the overall geological data and changes in rotation of the Earth in the Proterozoic, we should assume that at the end of the Archean the planet had an opposite rotation relative to the present.In the Late Proterozoic the speed of direct rotation of the Earth, which by this time already transformed from retrograde to direct, was growing steadily by almost one rotation per year, for which there is ample evidence in the sedimentary cover. Correspondingly, the duration of the day during that period was lengthening as well. In the Cambrian, the planet's period of rotation equalled its orbital circulation. Therefore, duration of the solar day at that time reacted its maximum, and the day and night interchange reversed the succession. In the Late Proterozoic and Post-Cambrian Palaeozoic, palaeodays were long enough so that the climate was subjected to cycle variations of a large scale and for very different latitudes. At that time, the transition to the shadow side was accompanied by low latitude phases of glaciation, while on the insolated side, high temperature indicators were formed and an intense process of dolomite formation was in progress. During a long palaeoday the flux density of solar radiation changed very slowly. As a result, a period of one day consisted of several epochs, in each of which the climate and the thermal and physical conditions of sedimentation did not undergo considerable changes. Within each such period, highly specific types of sedimentary rocks were formed, depending on the individual features of the sedimentation region. Thus, different radiation flux densities, corresponding to different stages of the day, transformed through climate and thermal conditions, are reflected in the Earth's sedimentary cover as a cyclically repetitive sequence of lithological types of rock with each change of day and night. The gradual change of solar energy flux density and the temperature trend during the long palaeoday are obviously imprinted in the carbonate cycles of the Late Proterozoic and the Palaeozoic on a large scale; Late Palaeozoic coal cyclothems which are connected to the duration of day and the level of biosphere development are particularly noticeable. For different durations of day, confined within certain limits, particular climatic and thermal conditions, as well as geological processes, were characteristic and this has been reflected in differences of variations in the content of stratigraphic subdivisions.A rapid increase in the speed of rotation of the planet and a corresponding shortening of the day's duration coincided with the Meso-Cenozoic rebuilding of the Earth's crust. Cyclic and trended changes of the climate, that were consequences of slow and accelerating rotation of the Earth in the geological past, had an extremely important influence on the biological revolution and evolution of the biosphere as a whole.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号