首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ground- and space-based GPS data ingestion into the NeQuick model
Authors:C Brunini  F Azpilicueta  M Gende  E Camilion  A Aragón Ángel  M Hernandez-Pajares  M Juan  J Sanz  Dagoberto Salazar
Institution:(1) School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK;(2) Research Group of Astronomy and Geomatics, Technical University of Catalonia (gAGE/UPC), Mod. C3, Campus Nord UPC, Jordi Girona 1, 08034 Barcelona, Spain;(3) IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
Abstract:This paper presents a technique for ingesting ground- and space-based dual-frequency GPS observations into a semi-empirical global electron density model. The NeQuick-2 model is used as the basis for describing the global electron density distribution. This model is mainly driven by the F2 ionosphere layer parameters (i.e. the electron density, N m F2, and the height, h m F2 of the F2 peak), which, in the absence of directly measured values, are computed from the ITU-R database (ITU-R 1997). This database was established using observations collected from 1954 to 1958 by a network of around 150 ionospheric sounders with uneven global coverage. It allows computing monthly median values of N m F2 and h m F2 (intra-month variations are averaged), for low and high solar activity. For intermediate solar activity a linear interpolation must be performed. Ground-based GNSS observations from a global network of ~350 receivers are pre-processed in order to retrieve slant total electron content (sTEC) information, and space-based GPS observations (radio occultation data from the FORMOSAT-3/COSMIC constellation) are pre-processed to retrieve electron density (ED) information. Both, sTEC and ED are ingested into the NeQuick-2 model in order to adapt N m F2 and h m F2, and reduce simultaneously both, the observed minus computed sTEC and ED differences. The first experimental results presented in this paper suggest that the data ingestion technique is self consistent and able to reduce the observed minus computed sTEC and ED differences to ~25–30% of the values computed from the ITU-R database. Although sTEC and ED are both derived from GPS observations, independent algorithm and models are used to compute their values from ground-based GPS observations and space-based FORMOSAT-3/COSMIC radio occultations. This fact encourages us to pursue this research with the aim to improve the results presented here and assess their accuracy in a reliable way.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号