首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stable isotope signatures associated with palaeosols, Pennsylvanian Holder Formation, New Mexico
Authors:ROBERT H GOLDSTEIN
Institution:University of Kansas, Department of Geology, 120 Lindley Hall, Lawrence, KS 66045, USA
Abstract:The Holder Formation (Pennsylvanian, Virgilian) of southern New Mexico, USA, consists of limestones interbedded with siliciclastics. It was deposited during times of glacio-eustatic sea-level change and was exposed subaerially during multiple sea-level lowstands. Microcomponents and whole-rock samples of limestones were analysed for δ13C and δ18O values to examine the method of whole-rock isotopic analysis for detecting subaerial exposure events and to determine the diagenetic processes acting during subaerial exposure. Whole-rock isotopic shifts are not consistently present across petrographically identified subaerial exposure surfaces. Apparently, whole-rock isotopic shifts do not result from wholesale replacement of the host sediment during soil formation. However, the isotopic shifts are present in calcareous, soil-precipitated microcomponents, such as rhizoliths, laminated crusts, and soil-precipitated cements. The components are heterogeneous in isotopic composition, but converge on a meteoric calcite line at about δ18O=?5.5‰. These microcomponents are heterogeneous in distribution and may either dominate or be a minor constituent of the whole rock at a single stratigraphic horizon. Without petrographic selection of palaeosol components, the detection of whole-rock isotopic shifts may depend on the selection or chance sampling of a rock containing abundant microcomponents precipitated in a soil environment. Only minor whole-rock isotopic shifts come from those rocks bearing no evidence of exposure and bearing lithological characteristics suggesting subaerial exposure was unlikely.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号