首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient flow and transport simulations in reconstructed 3D pore geometries
Authors:Yan Zaretskiy  Sebastian Geiger  Ken Sorbie  Malte Förster
Institution:1. Institute of Petroleum Engineering, Heriot-Watt University, EH14 4AS Edinburgh, UK;2. Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, D-53754 Sankt Augustin, Germany
Abstract:Upscaling pore-scale processes into macroscopic quantities such as hydrodynamic dispersion is still not a straightforward matter for porous media with complex pore space geometries. Recently it has become possible to obtain very realistic 3D geometries for the pore system of real rocks using either numerical reconstruction or micro-CT measurements. In this work, we present a finite element–finite volume simulation method for modeling single-phase fluid flow and solute transport in experimentally obtained 3D pore geometries. Algebraic multigrid techniques and parallelization allow us to solve the Stokes and advection–diffusion equations on large meshes with several millions of elements. We apply this method in a proof-of-concept study of a digitized Fontainebleau sandstone sample. We use the calculated velocity to simulate pore-scale solute transport and diffusion. From this, we are able to calculate the a priori emergent macroscopic hydrodynamic dispersion coefficient of the porous medium for a given molecular diffusion Dm of the solute species. By performing this calculation at a range of flow rates, we can correctly predict all of the observed flow regimes from diffusion dominated to convection dominated.
Keywords:Pore-scale modeling  Finite element  Finite volume  Solute transport  Navier&ndash  Stokes equation  Algebraic multigrid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号