首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identifying Key Sources of Uncertainty in Climate Change Projections
Authors:H Visser  R J M Folkert  J Hoekstra  J J de Wolff
Institution:(1) KEMA Sustainable, P.O. Box 9035, 6800 ET Arnhem, The Netherlands;(2) KEMA Sustainable, P.O. Box 9035, 6800 ET Arnhem, The Netherlands
Abstract:What sources of uncertainty shouldbe included in climate change projections and whatgains can be made if specific sources of uncertaintyare reduced through improved research?DIALOGUE, anintegrated assessment model, has been used to answerthese questions. Central in the approach of DIALOGUEis the concept of parallel modeling, i.e., for eachstep in the chain from emissions to climate change anumber of equivalent models areimplemented. The followingconclusions are drawn:The key source of uncertainty in global temperatureprojections appears to be the uncertainty inradiative forcing models. Within this group ofmodels uncertainty within aerosol forcing models isabout equal to the total forcing of greenhouse gasmodels. In the latter group CO2 is dominant.The least important source of uncertainty appears tobe the gas cycle models. Within this group of modelsthe role of carbon cycle models is dominant.Uncertainty in global temperature projections hasnot been treated consistently in the literature.First, uncertainty should be calculated as a productof all uncertainty sources. Second, aparticular choice of a base year for global warmingcalculations influences the ranking of uncertainty.Because of this, a comparison of ranking resultsacross different studies is hampered. We argue that`pre-Industrial' is the best choice for studies onuncertainty.There is a linear relationship between maximumuncertainty in the year 2100 and cumulativeemissions of CO2 over the period 1990–2100:higher emissions lead to more uncertainty.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号