首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The role of non‐coaxiality in the simulation of strain localization based on classical and Cosserat continua
Authors:J Chang  X Chu  Y Xu
Institution:Department of Engineering Mechanics, Wuhan University, Wuhan, China
Abstract:It is normally accepted that materials inside the shear band undergo severe rotation of the principal stress direction, which causes non‐coaxiality between the principal stress and principal plastic strain rate. However, classical plasticity flow theory implicitly assumes that the principal stress and the principal plastic strain rate are coaxial; thus, it may not correctly predict the onset of the shear band. In addition, classical continuum does not contain any internal length scales; as a result, it cannot provide a reasonable shear band thickness. In this study, the original vertex non‐coaxial plastic model based on the classical continuum is extended to the Cosserat continuum. The corresponding codes are implemented via the interface of the user defined element subroutine in ABAQUS. Through a simple shear test, the effectiveness of the user's codes is verified. Through a uniaxial compression test, the influence of non‐coaxiality on the onset, the orientation, and the thickness of the shear band is investigated. Results show that the onset of the shear localization is delayed, and the thickness of the shear band is widened when the non‐coaxial degree increases, while the orientation of the shear band is little affected by the non‐coaxial degree. In addition, it is found that the non‐coaxiality can weaken the micro‐polar effect to some extent; nonetheless, the Cosserat non‐coaxial model still has its advantage over the classical non‐coaxial model in capturing the pre‐bifurcation as well as the post‐bifurcation behaviors of strain localization. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:granular materials  Cosserat continuum  non‐coaxial  strain localization  bifurcation  bearing capacity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号