首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of hydraulic conductivity of gap-graded granular soils based on equivalent void ratio concept
Authors:Shi  X S  Zeng  Yiwen  Shi  Congde  Ma  Zhanguo  Chen  Wenbo
Institution:1.Key Lab of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, China
;2.State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China
;3.Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
;
Abstract:

Gap-graded granular soils are used as construction materials worldwide, and their hydraulic conductivity depends on their relative content of coarse and fine grains, initial conditions, and particle shape. In this study, a series of constant head hydraulic conductivity tests were performed on gap-graded granular soils with different initial relative densities, fine contents, and particle shapes. The test results show that the hydraulic conductivity decreases with an increase in fine fraction and then remains approximately constant beyond the “transitional fine content.” The role of the structural effect on the hydraulic conductivity is different from that on the mechanical properties (such as stiffness and shear strength). This can be attributed to the degree of filling within inter-aggregate voids, disturbance of soil structure, and densified fine bridges between coarse aggregates. The equivalent void ratio concept was introduced into the Kozeny–Carman formula to capture the effect of fines (aggregates) on the “coarse-dominated” (“fine-dominated”) structure, and a simple model is proposed to capture the change of hydraulic conductivity of gap-granular soils. The model incorporates a structural variable to capture the effect of fines on “coarse-dominated” structure and coarse aggregates on “fine-dominated” structure. The performance of the model was verified with experimental data from this study and previously reported data compiled from the literature. The results reveal that the proposed model is simple yet effective at capturing the hydraulic conductivity of gap-graded granular soils with a wide range of fine contents, initial conditions, and particle shapes.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号