首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of inherent microcrack populations on rock tensile fracture behaviour: numerical study based on embedded discontinuity finite elements
Authors:Saksala  Timo
Institution:1.Civil Engineering, Tampere University, POB 600, 33101, Tampere, Finland
;
Abstract:

Inherent microcrack populations have a significant effect on the fracture behaviour of natural rocks. The present study addresses this topic in numerical simulations of uniaxial tension and three-point bending tests. For this end, a rock fracture model based on multiple intersecting embedded discontinuity finite elements is developed. The inherent (pre-existing) microcrack populations are represented by pre-embedded randomly oriented discontinuity populations. Crack shielding (through spurious locking) is prevented by allowing a new crack to be introduced, upon violation of the Rankine criterion, in an element with an initial crack unfavourably oriented to the loading direction. Rock heterogeneity is accounted for by random clusters of triangular finite elements representing different minerals of granitic numerical rock. Numerical simulations demonstrate the strength lowering effect of initial microcrack populations. This effect is substantially stronger under uniaxial tension, due to the uniform stress state, than in semicircular three-point bending having a non-uniform stress state with a clear local maximum of tensile stress.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号