首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A diagnostic study on the environmental influence of a mesoscale convective system over southern China in Meiyu season
Authors:G T-J Chen  C-C Wang  C-S Hsieh
Institution:(1) Department of Atmospheric Sciences, National Taiwan University, Taipei, ROC, CN;(2) Department of Environmental Management, Jin-Wen Institute of Technology, Taipei, Taiwan, ROC, CN;(3) South Regional Meteorological Center, Central Weather Bureau, Tainan, Taiwan, ROC, CN
Abstract:Summary ¶During the Post-TAMEX forecast experiment of Taiwan in 1992, a mesoscale convective system (MCS) developed on June 5–6 over southern China. As this system matured, it produced readily apparent cirrus outflow on satellite imageries while the upper level flow also exhibited a diffluent pattern. The purpose of the current study is to examine the possible changes in its environment associated with the development of this MCS.By using 12-h data from 1200 UTC June 5 to 1200 UTC June 6, objective analyses were performed for a 1°×1° latitude/longitude grid using sounding data and a low-pass filter. To facilitate the diagnosis, a band-pass filter was further applied to separate mesoscale features from macroscale ones, while the apparent heat source and apparent moisture sink defined by Yanai et al (1973) were also calculated.Results suggest that the MCS exerted clearly discernable effects on its environment. The latent heat release led to the development of a warm core and mesoscale high-pressure disturbance at upper levels when the system matured. Ageostrophic winds and diffluent flow patterns together with strong anticyclonic vorticity at 200thinsphPa near the MCS were associated with the mesohigh. After the mature stage, weak cooling occurred above 350thinsphPa, likely due to radiative emission from the cloud top. However, a mid-level cyclonic vortex, often present in MCSs over the North America, was not apparent here due to weak environmental vorticity and small Coriolis parameter f. The level of maximum divergence was initially located at 500thinsphPa, but rose to 200thinsphPa as the MCS matured. In response, the upward motion not only intensified, but the level at which strongest rising occurred also ascended from 700 to 350thinsphPa. Results from the apparent heat source and moisture sink calculation suggest that this slow ascent of maximum heating was partially due to vertical transport of sensible heat by updrafts.During the MCSrsquos mature stage, under the stratiform clouds to the west of the strongest convection, a cold mesohigh formed at the surface due to evaporative cooling in downdrafts, and a gust front appeared along the leading edge of the outflow boundary. A trailing mesolow was also observed, likely due to near-adiabatic warming in drier downdrafts since no precipitation was associated with it.Received April 11, 2002; revised May 27, 2002; accepted July 14, 2002 Published online: April 10, 2003
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号