首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Penetrative convection in rapidly rotating flows: preliminary results from numerical simulation
Authors:Keith Julien  Sonya Legg  Jim McWilliams  Joseph Werne
Abstract:Turbulent convection forced by a surface heat flux into a stably stratified region is a feature of both the atmospheric and oceanic planetary boundary layers. Of particular interest is the interface between the convective layer and the stable stratification, where the entrainment of fluid into the convective layer by penetrating plumes may lead to a reverse buoyancy flux, and an enhancement of the stable stratification. Whereas in the atmosphere the influence of rotation on this penetrative convection is negligible, oceanic convection may be subjected to lower Rossby numbers and hence greater rotational influence. To isolate the effects of rotation, we present three numerical solutions for turbulent penetrative convection, characterised by different rotation rates, with all other parameters being held constant. Our results indicate that at lower Rossby numbers the lateral scale of the plumes is reduced, whereas the vertical vorticity of the plumes is much enhanced. Vertical transports of buoyancy and kinetic energy across the convective layer are reduced, leading to less efficient penetration at the interface with the stratified layer, and hence less reverse buoyancy flux in this region.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号