首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anaerobic Metabolism in Tidal Freshwater Wetlands: III. Temperature Regulation of Iron Cycling
Authors:Allyson L Bullock  Ariana E Sutton-Grier  J Patrick Megonigal
Institution:1. Smithsonian Environmental Research Center, 647 Contees Wharf Rd, Edgewater, MD, 21037, USA
Abstract:Understanding the ecological processes that regulate the production and fate of methane (CH4) in wetland soils is essential for forecasting wetland CH4 emissions. Iron reduction is an important carbon mineralization pathway that is capable of suppressing CH4 production in freshwater wetlands, but our understanding of temperature regulation of iron oxide respiration and the subsequent impacts on CH4 production is limited. We tested the hypothesis that temperature regulates iron reduction rates indirectly through differential effects on Fe(II) oxidation versus Fe(III) reduction, which ultimately determines the size of the microbially labile, poorly crystalline Fe(III) pool. Our study indicates that rates of iron reduction are more sensitive to changes in temperature than rates of iron oxidation, which creates imbalance in the relative proportion of Fe(II) and Fe(III) in the poorly crystalline soil iron pool as temperatures change. Our results suggest that warmer temperatures can cause the Fe(III) oxide pool to decline, limiting the Fe(III) supply to iron reducers and relieving competition for organic carbon with methanogens.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号