首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Factors influencing nutrient dynamics in the eutrophic Jiaozhou Bay, North China
Authors:Su Mei Liu  Jing Zhang  Hong Tao Chen
Institution:a College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, PR China
b State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, PR China
Abstract:We conducted studies of nutrients and water mass movements in a semi-enclosed bay in northern China to understand nutrient dynamics under varying tidal regimes. Four cruises were conducted under varying tidal regimes in Jiaozhou Bay, two at neap tide and one at spring tide in August and one at spring tide in October 2001. In addition to transect surveys, drift experiments and an anchor station were employed to show current and tidal effects. Samples for nutrient evaluation were taken from the five major tributary rivers in March (dry season) and August (flood season) of 2002 to estimate nutrient transport by rivers, and wastewater samples were collected to evaluate nutrients in wastewater discharge. Benthic nutrient fluxes were determined by (1) incubation of sediments with overlying seawater on board the boat and (2) calculated by Fick’s First Law from nutrient pore water profiles. Nutrient concentrations were high in the north, especially the northeast and northwest sectors, reflecting human activities. Jiaozhou Bay was characterized by high nitrogen, but low phosphorus and silica concentrations compared to Chinese coastal seas. Based on nutrient atomic ratios, the limiting elements for phytoplankton growth in Jiaozhou Bay were silica and phosphorus. The fluxes of nutrients between sediment and overlying water varied depending on the specific nutrient, the site and redox conditions. Benthic nutrient fluxes based on sediment incubations were all lower than the estimated diffusive fluxes, implying that the nutrients released from sediment pore waters were probably utilized by benthic microalgal and bottom-water primary production. A preliminary estimate of nutrient budgets demonstrated that riverine and wastewater inputs were greater than atmospheric deposition into Jiaozhou Bay, except that nitrate from wastewater inputs was less than atmospheric deposition. Concentrations of nitrogen and phosphorus increased while silica decreased in the last four decades, similar to other eutrophicated estuaries. The resulting shift in nutrient composition in Jiaozhou Bay affects phytoplankton composition, trophic interactions, and sustainability of living resources.
Keywords:China  Yellow Sea  Jiaozhou Bay
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号