首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Thermal History of the Huangmeijian Granite Intrusion in Anhiii and Its Relation to Mineralization: Isotopic Evidence
Authors:Zheng Yongfei  Fu Bin  Gong Bing
Abstract:Abstract Whole—rock Rb—Sr, zircon U—Pb and hornblende, biotite and K—feldspar K—Ar ages are used to reconstruct the cooling history of the Huangmeijian intrusion in the Anqing—Lujiang quartz—syenite belt in Anhui. Oxygen isotope geothermometry of mineral pairs demonstrates that diffusion is a dominant factor controlling the closure of isotopic systems. Assuming the cooling of the intrusion is synchronous with a dicrease in local geothermal gradients, an emplacement depth of about 8 km and the magma crystallization temperature of 800 ± 50°C are estimated. The Huangmeijian intrusion experienced a rapid cooling process and uplifted after its emplacement and crystallization at 133 Ma B.P. with a cooling rate of 34.5°C / Ma and an uplifting rate of 0.35 mm/ a. The intrusion was rising until it rested at a depth of 3 km at a temperature of 300 ± 50°C about 14 Ma later. Then the intrusion was in slow cooling and uplifting with a cooling rate of 4.4°C / Ma and an uplifting rate of 0.04 mm/ a. U—Pb dating of pitchblende is done for the hydrothermal uranium deposit formed in the contact zone of the Huangmeijian intrusion. The result shows that the mineralization age is close to the closing time of the K—Ar system in biotite. The fluid inclusion thermometry indicates that the mineralization temperature is in agreement with the closure temperature of the biotite K—Ar system. This suggests a close relationship between the slow cooling of the intrusion and the hydrothermal uranium mineralization process.
Keywords:quartz syenite  isotopic age  oxygen isotope  cooling history  mineralization  rate control
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号