首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wavelength dependence of aerosol optical depth and the fit of the Ångström law
Authors:Z D Adeyewa  E E Balogun
Institution:(1) Department of Meteorology, Federal University of Technology, Akure, Nigeria, NG;(2) Department of Physics, Obafemi Awolowo University, Ile-Ife, Nigeria, NG
Abstract:Summary ?The dependence of aerosol optical depth on wavelength as well as the fit of the ?ngstr?m approximation have been investigated under different air masses at a sub-Arctic location (Abisko, Sweden; 68° 21′ N, 18° 49′ E) and a tropical environment (Ife, Nigeria; 7° 30′ N, 4° 31′ E). The study is based on spectral data acquired with a high resolution spectral radiometer (spectral range: 300–1100 nm) in absorption-free regions. The wavelength dependence of the aerosols under different air mass conditions at the sub-arctic location offer significant contrasts to aerosols of Saharan origin at Ife. A general characteristic of the aerosol optical depth spectra after the Pinatubo volcanic eruption was a much weaker wavelength dependence relative to pre-Pinatubo conditions. Categorising the features of the optical depth spectra according to their wavelength dependence, three main groups were observed at Abisko, while two main classes have been discussed for the harmattan season in the tropical climate of Ife and environs. For the first two groups in Abisko (and the first group at Ife), aerosol optical depth generally decreased with wavelength while the third group (second group at Ife) exhibited strong curvatures. The correlation coefficient obtained from the regression equation of the ?ngstr?m equation, has been shown to be a good index of the general fit of the ?ngstr?m approximation for the three groups at Abisko, but much weaker for the harmattan conditions at the tropical location. Although the probability of systematic deviations from the ?ngstr?m law is highest under intense harmattan conditions with considerably high β and low α, it has been observed that the ?ngstr?m fit was good in many highly turbid conditions at the tropical site. Hence, apart from the level of turbidity, the applicability of the ?ngstr?m approximation is strongly dependent on aerosol characteristics and source region. Formerly Adeyefa. Received May 18, 2001; revised June 20, 2002; accepted August 5, 2002
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号