首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific
Authors:Chunzai Wang  Chunxiang Li  Mu Mu  Wansuo Duan
Institution:1. Physical Oceanography Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, 4301 Rickenbacker Causeway, Miami, FL, 33149, USA
2. LASG/Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
3. Graduate University of Chinese Academy of Sciences, Beijing, China
4. Key Laboratory of Ocean Circulation and Wave/Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
Abstract:The paper examines different impacts of eastern Pacific warm/cold (EPW/EPC) and central Pacific warm/cold (CPW/CPC) events on tropical cyclones (TCs) in the western North Pacific (WNP) by considering the early season of April–June (AMJ), the peak season of July–September (JAS) and the late season of October–December (OND). During AMJ, EPW (EPC) is associated with a significant increase of the TC genesis number in the southeastern (southwestern) sub-region of the WNP, but no class of El Niño-Southern Oscillation (ENSO) events shows a significant change in the TC lifetime and intensity. During JAS, EPW corresponds to an increase (decrease) of the TC genesis number in the southeastern (northwestern) sub-region, but CPW shows no significant change. EPC increases the TC genesis in the northwestern and northeastern sub-regions and decreases the genesis in the southwestern sub-region, whereas CPC suppresses the genesis in the southeastern sub-region. Both the lifetime and intensity of TCs are increased in EPW, but only a shortened lifetime is seen for CPC. During OND, EPW reduces the TC genesis in the southwestern and northwestern sub-regions, whereas CPW enhances the genesis in the southeastern sub-region. Over the South China Sea, CPW and CPC show a significant decrease and increase of the TC genesis, respectively. The TC lifetime is significantly longer in both EPW and CPW and shorter in EPC, and TCs tend to be more (less) intense in EPW (CPC). All of these variations are consistent with the development of ENSO-related SST anomalies during different seasons and are supported by distributions of the genesis potential index—a combination of large-scale oceanic and atmospheric factors that affect TC activity. TCs in the WNP mainly take the straight westward, northwestward and recurving tracks. During AMJ of EPW years, the TC steering flow patterns favor the recurving track and suppress the straight westward and northwestward tracks. During JAS, EPW is associated with the steering flows that are unfavorable for TCs to move northwestward or westward, whereas CPW favors the northwestward track and suppresses the straight westward track. The steering flow patterns during OND are similar to those during JAS, except that EPC may increase the possibility of the northwestward track.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号