首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hot super-dense compact object with particular EoS
Authors:E P Tito  V I Pavlov
Institution:1.Scientific Advisory Group,Pasadena,USA;2.UFR des Mathématiques Pures et Appliquées,University Lille,Lille,France
Abstract:We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass \(M \ll M_{\odot }\), and small radius \(R \ll R_{\odot }\). We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density \(\rho_{c}\) and temperature \(T_{c}\). For such an object, we derive a radial distribution for the super-dense matter in “liquid” phase using Tolman–Oppenheimer–Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (\(M \ll M_{\odot }\)) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号