首页 | 本学科首页   官方微博 | 高级检索  
     检索      


How the Earth's inner magnetosphere works: An evolving picture
Institution:1. Stanford University, Stanford, USA;2. Southwest Research Institute, San Antonio, USA;3. University of California, Los Angeles, USA;1. Yale University, Geology and Geophysics, New Haven, CT, United States;2. University of Washington, Seattle, WA, United States;1. Department of Physics, Lancaster University, Bailrigg, Lancaster LA1 4YB, UK;2. Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK;3. JHU APL, 111999 Johns Hopkins Road, Laurel, MD 20723, USA;4. Space Environment Technologies, Los Angeles, California, USA;5. LPAP, Université de Liège, Sart Tilman-B5c, 17 Allé du 6 Aout, 4000 Liege, Belgium;6. Department of Physics and Astronomy, University of Iowa, 613 Van Allen Hall, Iowa City, IA 52242-1479, USA;7. Central Arizona College, Coolidge, AZ 85128, USA;8. LPL, University of Arizona, Tucson, AZ 85721, USA;9. JPL, Pasadena, CA 91109, USA;10. Imperial College London, London SW7 2AZ, UK;1. Siberian State Aerospace University, Krasnoyarsk, Russia;2. Departamento de Matemáticas, CUCEI, Universidad de Guadalajara, Mexico;1. Institut de Recherche en Astrophysique et Planétologie, CNRS, Université Paul Sabatier, Toulouse, France;2. Department of Physics, Aberystwyth University, Wales, UK;3. Department of Physics and Astronomy, University College London, London, UK;4. Institut de Planétologie et d′Astrophysique de Grenoble, UGA/CNRS-INSU, Grenoble, France;5. GFI Informatique, Toulouse, France;6. LESIA, Observatoire de Paris, CNRS, UPMC, University Paris Diderot, Meudon, France;7. Institute of Atmospheric Physics, Czech Academy of Science, Prague, Czech Republic;8. Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco, Bilbao, Spain;9. Mullard Space Science Laboratory, University College London (UCL), Holmbury Saint Mary, UK;10. The Centre for Planetary Sciences at UCL/Birkbeck, London, UK;11. German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, 51147 Cologne, Germany;12. Wigner Research Centre for Physics, Budapest, Hungary;13. Space Research Centre, Polish Academy of Sciences, Warsaw, Poland;14. National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan;1. National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, MD, USA;2. The New Mexico Consortium, Los Alamos, NM, USA;3. Physics Department, Catholic University of America, Washington, D.C., USA;4. Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, USA;5. Space Sciences Department, The Aerospace Corporation, Los Angeles, CA, USA
Abstract:This tutorial review deals with large-scale convection electric fields in Earth's inner magnetosphere and the particle populations that interact strongly with those fields, specifically the inner plasma sheet, ring current, and plasmasphere. We summarize the state of knowledge in the early 1970s, by which time most of the major observational features had been discovered and much of the basic theory had been developed. The review then focuses on how observational knowledge and theoretical understanding have increased since the early 1970s in several areas, specifically prompt-penetration electric fields; polarization jets (PJs), subauroral ionization drifts (SAIDs), and subauroral polarization streams (SAPS); ring current dynamics; and large-scale plasmasphere dynamics.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号