首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial scale effects on sediment concentration in runoff during flood events for hilly areas of the Loess Plateau,China
Authors:Mingguo Zheng  Fen Qin  Liying Sun  Deli Qi  Qiangguo Cai
Institution:1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences & Natural Resources Research, Chinese Academic of Sciences, , Beijing, China;2. College of Environment and Planning, Henan University, , Kaifeng, China
Abstract:The spatial scale effect on sediment concentration in runoff has received little attention despite numerous studies on sediment yield or sediment delivery ratio in the context of multiple spatial scales. We have addressed this issue for hilly areas of the Loess Plateau, north China where fluvial processes are mainly dominated by hyperconcentrated flows. The data on 717 flow events observed at 17 gauging stations and two runoff experimental plots, all located in the 3906 km2 Dalihe watershed, are presented. The combination of the downstream scour of hyperconcentrated flows and the downstream dilution, which is mainly caused by the base flow and is strengthened as a result of the strong patchy storms, determines the spatial change of sediment concentration in runoff during flood events. At the watershed scale, the scouring effect takes predominance first but is subordinate to the downstream dilution with a further increase in spatial scale. As a result, the event mean sediment concentration first increases following a power function with drainage basin area and then declines at the drainage basin area of about 700 km2. The power function in combination with the proportional model of the runoff‐sediment yield relationship we proposed before was used to establish the sediment‐yield model, which is neither the physical‐based model nor the regression model. This model, with only two variables (runoff depth and drainage basin area) and two parameters, can provide fairly accurate prediction of event sediment yield with model efficiency over 0·95 if small events with runoff depth lower than 1 mm are excluded. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:spatial scale  hyperconcentrated flow  sediment yield  soil erosion  flood events  Loess Plateau
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号