首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bar dynamics and bifurcation evolution in a modelled braided sand‐bed river
Authors:Filip Schuurman  Maarten G Kleinhans
Institution:1. Faculty of Geosciences, Department of Physical Geography, Utrecht University, The Netherlands;2. Department of RiversDeltas and Coasts, Royal HaskoningDHV, Amersfoort, The Netherlands
Abstract:Morphodynamics in sand‐bed braided rivers are associated with simultaneous evolution of mid‐channel bars and channels on the braidplain. Bifurcations around mid‐channel bars are key elements that divide discharge and sediment. This, in turn, may control the evolution of connected branches, with effects propagating to both upstream and downstream bifurcations. Recent works on bifurcation stability and development hypothesize major roles of secondary flow and gradient advantage. However, this has not been tested for channel networks within a fully developed dynamic braided river. A reason for this is a lack of detailed measurements with sufficient temporal and spatial length, covering multiple bifurcations. Therefore we used a physics‐based numerical model to generate a dataset of bathymetry, flow and sediment transport of an 80 km river reach with self‐formed braid bars and bifurcations. The study shows that bar dissection due to local transverse water surface gradients is the dominant bifurcation initiation mechanism, although conversion of unit bars into compound bars dominates in the initial stage of a braided river. Several bifurcation closure mechanisms are equally important. Furthermore, the study showed that nodal point relations for bifurcations are unable to predict short‐term bifurcation evolution in a braided river. This is explained by occurrence of nonlinear processes and non‐uniformity within the branches, in particular migrating bars and larger‐scale backwater‐effects, which are not included in the nodal point relations. Planform morphology, on the other hand, has predictive capacity: bifurcation angle asymmetry and bar‐tail limb shape are indicators for near‐future bifurcation evolution. Remote sensing data has predictive value, for which we developed a conceptual model for interactions between bars, bifurcations and channels in the network. We conducted a preliminary test of the conceptual model on satellite images of the Brahmaputra. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:braided river  bifurcations  Bars  numerical model  Delft3D
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号