首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cumberland batholith,Trans-Hudson Orogen,Canada: Petrogenesis and implications for Paleoproterozoic crustal and orogenic processes
Authors:Joseph B Whalen  Natasha Wodicka  Bruce E Taylor  Garth D Jackson
Institution:1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46th Guanshui Road, Guiyang 550002, PR China;2. Department of Geological Sciences, Indiana University, 1001 East Tenth Street, Bloomington, IN 47405, USA;1. MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China;2. Department of Earth Science, Durham University, Durham DH1 3LE, UK;3. Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia
Abstract:Large volume, plutonic belts, such as the ~ 221,000 km2, ca. 1.865–1.845 Ga Cumberland batholith (CB) of the Trans-Hudson Orogen in Canada, are major components of Paleoproterozoic orogenic belts. In many cases, they have been interpreted as continental arc batholiths. The petrogenesis and tectonic context of the CB and implications for crustal growth and recycling are interpreted herein based on a 900 km geochemical-isotopic (Nd–O) transect across it and into granitoid plutons within bounding Archean cratons in central and southern Baffin Island.The mainly granulite grade CB, emplaced over an age span of between 14 and 24 Ma, consists mainly of high-K to shoshonitic monzogranite and granodiorite, but also includes low- and medium-K granitoid rocks. Metaluminous to slightly peraluminous compositions and δ18O (VSMOW) values (+ 6 to + 10‰) indicate derivation from infracrustal (I-type) sources. εNd 1.85 Ga signatures (? 12 to ? 2) of both mafic and felsic units suggest a dominance of evolved sources. Isotopic signatures in the interior of the CB (? 2 to ? 7) are more radiogenic than those within Archean domains in central (? 8 to ? 15) and southern (? 5 to ? 19) Baffin Island. The isotopic transect is interpreted as ‘imaging’ an accreted microcontinental block (Meta Incognita) and bounding Archean cratons. The CB includes granites of arc, within-plate (A-type) and post-collisional affinity and volumetrically minor mafic rocks with both arc and non-arc features. (La/Yb)CN and Sr/Y values range from < 1 to 225 and < 1 to 611, respectively. In these respects, some CB granitoid rocks resemble Paleozoic adakitic granites, interpreted as partial melts of greatly thickened crust within post-collisional settings, such as Tibet. Thus, the CB likely encompasses various non-consanguineous magmatic suites generated at deep- to mid-crustal depths. Although CB granitoid rocks undoubtedly had important crustal sources, it is hard to assess the relative contribution of mantle-derived magmas.The CB is best interpreted as a post-accretion batholith resulting from large-scale lithospheric mantle delamination followed by the upwelling of hot asthenospheric mantle leading to voluminous crustal partial melting. Contributors to crustal instability which may have facilitated such delamination included: (a) a collage of recently assembled small cratons underlain by hot, weak lithosphere with mantle-depth structural breaks within this segment of the Trans-Hudson Orogen; (b) the gabbro-eclogite phase transformation, and (c) a greatly thickened crustal section (> 60 km), as evidenced by adakitic granites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号