首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China: Geochemical constraints on mantle source characteristics and petrogenesis
Authors:Zhaochong Zhang  Xuchang Xiao  Jun Wang  Yong Wang  Timothy M Kusky
Institution:aState Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, PR China;bInstitute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, PR China;cDepartment of Earth and Atmospheric Sciences, 3507 Laclede Avenue, St. Louis, MO 63103-2010, USA
Abstract:Major and trace element, Sr–Nd–Pb isotope and mineral chemical data are presented for post-collisional late Cenozoic shoshonitic volcanic rocks from the western Kunlun Mountains, NW China. They are distributed in two approximately E–W striking sub-belts, with the lavas in the southern sub-belt having been generated earlier than those in the northern sub-belt. The mineralogy of the rocks reflects crystallization from moderate temperature magmas (700–1000 °C) with high oxygen and water fugacities. They are geochemically characterized by relatively low TiO2, Al2O3 and FeO and high alkalies coupled with very high contents of incompatible element concentrations. Remarkably negative Nb, Ta and Ti anomalies are displayed on primitive mantle-normalized incompatible element patterns. In addition, they show a relatively broad range of low εNd (−1.8 to −8.7) at more restricted 87Sr/86Sr ratios (0.7081–0.7090). Pb isotopes are characterized by a range of 207Pb/204Pb (15.48–15.74) and 208Pb/204Pb (38.30–39.12) ratios at relatively invariant 206Pb/204Pb (18.60–18.83) values, except one sample with a ratio of 18.262, leading to near-vertical arrays. The lavas from the northern sub-belt have relatively high 87Sr/86Sr ratios. All lavas have extremely high La/Yb ratios, probably reflecting that the magmas were derived from a metasomatized lithospheric mantle source containing phlogopite–hornblende garnet peridotite affected by subducted sediments and hydrous fluids, rather than from a depleted asthenopheric mantle source or mantle plume source. However, the lavas from the southern sub-belt were derived from a lower degree of melting of more highly metasomatized sub-lithospheric mantle in comparison with those from the northern sub-belt. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in the western Kunlun could be a consequence of continuously conductive heating of upwelling, hot asthenospheric mantle following the delamination subsequent to thickening, which is consistent with the spatial and temporal geochemical variations in shoshonitic rocks in Tibet.
Keywords:Shoshonites  Geochemistry  Metasomatized lithospheric mantle  Subducted sediments  Convective thinning  Western Kunlun Mountains
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号