首页 | 本学科首页   官方微博 | 高级检索  
     检索      

海洋激光雷达反演水体光学参数
引用本文:刘志鹏,刘东,徐沛拓,吴兰,周雨迪,韩冰,刘群,宋庆君,毛志华,张与鹏,崔晓宇,陈鹏.海洋激光雷达反演水体光学参数[J].遥感学报,2019,23(5):944-951.
作者姓名:刘志鹏  刘东  徐沛拓  吴兰  周雨迪  韩冰  刘群  宋庆君  毛志华  张与鹏  崔晓宇  陈鹏
作者单位:浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,国家海洋技术中心, 天津 300112,浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,国家卫星海洋应用中心, 北京 100081,自然资源部 第二海洋研究所, 杭州 310012,浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,浙江大学 光电科学与工程学院 现代光学仪器国家重点实验室, 杭州 310027,自然资源部 第二海洋研究所, 杭州 310012
基金项目:国家重点研发计划(编号:2016YFC1400900,2016YFC0200700);国家自然科学基金(编号:41775023,61475141);浙江省自然科学基金(编号:LR19D050001)
摘    要:研制了一套船载海洋激光雷达,用于探测海水光学参数垂直廓线。2017年8月,该系统在黄海海域进行了实验测量。在准单次散射模型中引入原位测量的光学参数,实现了理想激光雷达回波信号的模拟,并将该理想信号与系统响应函数卷积后精确复现了实验的激光雷达信号。采用Fernald后向迭代积分法(简称Fernald法),比较了不同水体悬浮物激光雷达比下反演的激光雷达衰减系数α与原位漫射衰减系数Kd的差别。基于停航时标定的水体悬浮物激光雷达比,采用Fernald法获得了走航时的激光雷达衰减系数。进一步地,提出一种基于米散射激光雷达数据和原位测量的后向散射数据的融合算法,模拟了高光谱分辨率激光雷达(HSRL)反演α的过程,并将其与Fernald法进行了比较。实验结果表明,自研的海洋激光雷达能够有效探测海水光学参数,基于合适的水体悬浮物激光雷达比的Fernald法可以有效应用于米散射激光雷达的反演,未来无需假设的HSRL在海水光学参数探测领域具有更大的优势。

关 键 词:遥感  海洋光学  光学遥感  激光雷达  漫射衰减系数  激光雷达衰减系数
收稿时间:2018/9/6 0:00:00

Retrieval of seawater optical properties with an oceanic lidar
LIU Zhipeng,LIU Dong,XU Peituo,WU Lan,ZHOU Yudi,HAN Bing,LIU Qun,SONG Qingjun,MAO Zhihu,ZHANG Yupeng,CUI Xiaoyu and CHEN Peng.Retrieval of seawater optical properties with an oceanic lidar[J].Journal of Remote Sensing,2019,23(5):944-951.
Authors:LIU Zhipeng  LIU Dong  XU Peituo  WU Lan  ZHOU Yudi  HAN Bing  LIU Qun  SONG Qingjun  MAO Zhihu  ZHANG Yupeng  CUI Xiaoyu and CHEN Peng
Institution:State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China,National Ocean Technology Center, Tianjin 300112, China,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China,National Satellite Ocean Application Service, Beijing 100081, China,Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China,State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
Abstract:Studying seawater optical properties is of great importance in global climate change and material cycle. lidar has the ability to retrieve the profiles of seawater''s optical properties. A single-scattering lidar equation is typically a useful and effective model of lidar return. However, lidar return depends on the volume scattering function at 180° scattering angle and lidar attenuation coefficient, which makes retrieval from an equation difficult. The Fernald method is often used to retrieve backscatter lidar return with the assumption of lidar ratio. High Spectral Resolution Lidar (HSRL) can retrieve optical properties without assumption.
A shipborne traditional lidar was developed to detect the vertical profile of seawater optical parameters. Experiments on seawater were conducted in the nearshore and offshore regions of the Yellow Sea. The lidar system was fixed on the front deck of a scientific survey boat. In situ optical measurements were also performed in the two regions. A simple quasi-single-scattering approximation was employed to calculate a modeled lidar return with inherent optical properties derived from the in situ measurement. The comparison of oceanographic lidar returns with modeled lidar returns using nearly coincident in situ optical properties were in perfect agreement with the nearshore and offshore regions, indicating that lidar can effectively detect seawater optical parameters.
The difference between the inverse lidar attenuation coefficient and the in situ diffusion attenuation coefficient were analyzed based on the Fernald method with different lidar ratios. With the use of the calibrated lidar ratio, the lidar attenuation coefficients while sailing were obtained by using the Fernald method. A fusion algorithm based on traditional lidar data and in situ backscatter coefficient was also proposed to simulate HSRL. Then the accuracies of the Fernald method and fusion algorithm were compared. In the nearshore water column, diffuse attenuation coefficient varied from 0.15 m−1 to 0.28 m−1, and the maximum error of both methods was below 11%. As for the offshore water column, diffuse attenuation coefficients changed little through depths, approximately 0.1 m−1 to 0.16 m−1. The maximum error of the two methods was nearly 17%. The statistical analysis showed that diffuse attenuation coefficient can be well employed both by fusion algorithm and the Fernald method (with calibrated lidar ratio).
This paper described the applications of lidar for profiling the properties of upper ocean. To overcome the assumption of lidar ratio in the future while retrieving water column information from traditional lidar, the HSRL without assumption has a great advantage in the field of seawater optical parameter detection.
Keywords:remote sensing  ocean optics  optical remote sensing  lidar  diffuse attenuation coefficient  lidar attenuation coefficient
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号