首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of systematic errors on precise long-baseline kinematic GPS positioning
Authors:Torben Schüler
Institution:(1) University of the Federal Armed Forces Munich Institute of Geodesy and Navigation, 85577 Neubiberg, Germany
Abstract:Many kinematic GPS applications rely on high accuracy, which usually requires the ambiguities to be fixed. Normally, a reference station in the rover’s vicinity is needed for successful ambiguity resolution. Alternatively, a network surrounding the rover and allowing one to derive area correction parameters is needed. Unfortunately, both approaches are not feasible in certain situations. This paper is a contribution to precise kinematic positioning over long baselines. Atmospheric refraction becomes critical in the error budget, but progress has been made to use numerical weather models to derive tropospheric corrections, for instance. The spatial correlation of both ionospheric and tropospheric propagation delays is investigated in this paper and special attention is paid on the systematic error behavior of tropospheric refraction. The principles developed are applied to an extended reliability test of the ambiguities. Finally, it is demonstrated in positioning experiments that kinematic positioning retrieval with fixed ambiguities is actually possible for baselines between 150 and 300 km with an accuracy of approximately 2 cm in post-mission processing.
Contact InformationTorben SchülerEmail: Phone: +49-89-60042587Fax: +49-89-60043019
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号