首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dereverberation of marine reflection seismic data by a spatial combination of predictive deconvolution and velocity filtering
Authors:C Samson  G F West
Institution:(1) Geophysics Division, Department of Physics, University of Toronto, M5S 1A7 Toronto, Ontario, Canada
Abstract:Contamination of seismic reflection records at early times by first-order water reverberations can be especially severe during survey operations over hard and flat sea floors on the continental shelf or in lake environments. A new dereverberation scheme based on two classical techniques — predictive deconvolution and velocity filtering — has been developed to address this problem. The techniques are combined spatially to take advantage of their complementary offset- and time-dependent properties. Stage I of the scheme consists of applying predictive deconvolution at short offset. The data are previously conditioned by a normal moveout correction with the water velocity which restores the periodicity of the reverberations in the offset-time plane and enhances the performance of deconvolution. Stage II of the scheme involves velocity filtering in the common-midpoint domain which is particularly effective at long offset where the moveout difference between primary reflections and reverberations is largest. The dereverberation scheme is well suited for the initial processing of large volumes of data due to the general availability of cost-effective deconvolution and velocity filtering algorithms in seismic processing software packages. Practical implementation issues are illustrated by a field example from the GLIMPCE survey in Lake Superior.Lithoprobe Publication No. 475.
Keywords:Water reverberations  predictive deconvolution  velocity filtering  seismic reflection  GLIMPCE
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号