首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bio-optical signatures and biogeochemistry from intense upwelling and relaxation in coastal California
Authors:Raphael M Kudela  Newell Garfield  Kenneth W Bruland
Institution:aOcean Sciences Department, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA;bRomberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920, USA
Abstract:The NSF-sponsored Coastal Ocean Processes Wind Events and Shelf Transport (WEST) experiment investigates the interplay between wind-driven transport and shelf productivity; while eastern boundary shelves are characterized by high productivity due to upward fluxes of nutrients into the euphotic zone, wind forcing also represents negative physical and biological controls via offshore transport and deep (light-limiting) mixing of primary producers. Although this interaction has been well documented for eastern boundary systems generally and for California specifically, one of the primary goals of WEST was to characterize more fully the interplay between positive and negative effects of wind stress, which result in the consistently elevated biological productivity in these shelf regions. During 3 month-long summer cruises (2000–2002) we observed extremes in upwelling/relaxation, using both in situ instrumentation and remotely sensed data. Relationships between optical and physical properties were examined, with emphasis on biogeochemical implications. During 2000, the WEST region was optically dominated by phytoplankton and covarying constituents. During 2001 and 2002, periods of more intense upwelling favorable winds, we observed a transition to optical properties dominated by detrital and inorganic materials. In all years, the continental shelf break provided a natural boundary between optically distinct shelf and open ocean waters. During 2002, we obtained discrete trace-metal measurements of particulate iron and aluminum; we develop a bio-optical proxy for acetic-acid leachable iron from backscatter and fluorescence, and demonstrate that particulate iron is not well correlated to traditional upwelling proxies such as macronutrients, temperature, and salinity. We conclude that the shelf break between ca. 100 and 200 m water depth serves as a natural break point between coastal and oceanic water masses in this region, and that the elevated biomass and productivity associated with this eastern boundary current regime is dominated by these iron rich, shallow shelf waters.
Keywords:Eastern boundary current  Bio-available iron  Primary production  Upwelling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号