首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mercury methylation dynamics in estuarine and coastal marine environments — A critical review
Authors:Karen A Merritt  Aria Amirbahman  
Institution:aENVIRON International Corp. 136 Commercial St. Portland, ME 04101, USA;bDepartment of Civil and Environmental Engineering, 5711 Boardman Hall, University of Maine, Orono, ME 04469, USA
Abstract:Considerable recent research has focused on methylmercury (MeHg) cycling within estuarine and coastal marine environments. Because MeHg represents a potent neurotoxin that may magnify in marine foodwebs, it is important to understand the mechanisms and environmental variables that drive or constrain methylation dynamics in these environments. This critical review article explores the mechanisms hypothesized to influence aqueous phase and sediment solid phase MeHg concentrations and depth-specific inorganic Hg (II) (Hgi) methylation rates (MMR) within estuarine and coastal marine environments, and discusses issues of terminology or methodology that complicate mechanism-oriented interpretation of field and laboratory data. Mechanisms discussed in this review article include: 1) the metabolic activity of sulfate reducing bacteria (SRB), the microbial group thought to dominate mercury methylation in these environments; 2) the role that Hgi concentration and/or speciation play in defining depth-specific Hgi methylation rates; and 3) the depth-dependent balance between MeHg production and consumption within the sedimentary environment. As discussed in this critical review article, the hypothesis of SRB community control on the Hgi methylation rate in estuarine and coastal marine environments is broadly supported by the literature. Although Hgi speciation, as a function of porewater inorganic sulfide and/or dissolved organic matter concentration and/or pH, may also play a role in observed variations in MMR, the nature and function of the controlling ligand(s) has not yet been adequately defined. Furthermore, although it is generally recognized that the processes responsible for MeHg production and consumption overlap spatially and/or kinetically in the sedimentary environment, and likely dictate the extent to which MeHg accumulates in the aqueous and/or sediment solid phase, this conceptual interpretation requires refinement, and would benefit greatly from the application of kinetic modeling.
Keywords:mercury  methylation  estuary  marine  sediment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号