首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The influence of water on the stress supported by experimentally faulted Westerly granite
Authors:S M Dennis  B K Atkinson
Institution:Department of Geology, Imperial College of Science and Technology, London SW7 2BP, England
Abstract:Summary. Fault zones in wet Westerly granite deformed at temperatures of 300° and 400°C require markedly lower shear stresses for sliding than when dry, even when the effective confining pressure is held constant between the wet and dry tests, provided that the strain rate is lower than 10−7s−1. The rate of strength reduction is enhanced by increasing the pore water pressure. The deformation rate is a power function of the applied stress where the stress exponent is approximately 7 for pore water pressure of 100 MPa and 21 for pore water pressure of 20 MPa.
The experimental results are extrapolated to conditions believed to occur at depths of 10 km along the San Andreas Fault Zone. It is suggested that for slow tectonic deformation at strain rates of 10−11 and 10−14s−1 the shear stress for sliding on faults in granite would be approximately 60 and 20 MPa, respectively, at pore water pressures equal to the hydrostatic head. Fluid overpressures of c. 0.8 lithostatic pressure are required to lower the shear stress for sliding into the 10 MPa range at the slower strain rate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号