首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modified compressive sensing approach for GNSS signal reception in the presence of interference
Authors:Chung-Liang Chang
Institution:1.Department of Biomechatronics Engineering,National Pingtung University of Science and Technology,Pingtung County,Taiwan, ROC
Abstract:Pre-processing traditional navigation signals in global navigation satellite system (GNSS) receivers includes the conversion of an analog-to-digital sample and acquisition following the basic principle of Nyquist sampling theory. This condition inevitably increases the system computation time and cost of a modern wideband receiver. In recent years, the compressive sensing (CS) approach has been proven to effectively reduce the number of measurement samples required for digital signal acquisition systems. This method gives new potential to this modern design. In this study, a modified compressive sensing algorithm for the acquisition of a GNSS signal that is contaminated by an interfering signal is presented. The proposed method attempts to combine CS demodulation and the subspace projecting method to enhance GNSS signal acquisition performance with interference present. First, the received signal is sub-sampled and aliased from a compressive sampling process. This operation maintains the restricted isometry property (RIP) condition of the second sampling process using a Toeplitz-structured sensing matrix, which replaces a conventional random sensing matrix. The matrix ensures that distances between desired signals on the set of sparse space are not influenced by the sampling process. Next, the interference is eliminated through the orthogonal feature between the interference signal and the desired signal using the subspace projecting method. This also preserves the RIP of the projecting matrix to ensure that the original structure of the linear projection of the signal is preserved. After this, an iterative least-square method is utilized to recover the correlator output from the reception samples taken by the CS demodulator. In addition, the signal detection performance in the presence of co-channel interference using a CS demodulator is analyzed and evaluated. Finally, the relationships between signal detection probability, compressive factor and signal bandwidth are also illustrated. Several numerical results are presented to verify the theory.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号