首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Methods for Measuring Seismicity Rate Changes: A Review and a Study of How the M w 7.3 Landers Earthquake Affected the Aftershock Sequence of the M w 6.1 Joshua Tree Earthquake
Authors:David Marsan  Suleyman S Nalbant
Institution:(1) Laboratoire de Géophysique Interne et Tectonophysique, Université de Savoie, 73376 Le Bourget du Lac, France;(2) Geophysics Research Group, University of Ulster, Coleraine, Co. Derry, BT52 1SA, Northern Ireland
Abstract:The development of fault interaction models has triggered the need for an accurate estimation of seismicity rate changes following the occurrence of an earthquake. Several statistical methods have been developed in the past to serve this purpose, each relying on different assumptions (e.g., stationarity, gaussianity) pertaining to the seismicity process.In this paper we review these various approaches, discuss their limitations, and propose further improvements. The feasibility of mapping robust seismicity rate changes, and more particularly rate decreases (i.e., seismicity shadows), in the first few days of an aftershock sequence, is examined. To this aim, the hypothesis of large numbers of earthquakes, hence the use of Gaussian statistics, as is usually assumed, must be dropped.Finally, we analyse the modulation in seismicity rates following the 1992, June 28 Mw 7.3 Landers earthquake in the region of the 1992, April 22 Mw 6.1 Joshua Tree earthquake. Clear instances of early triggering (i.e., in the first few days) followed by a seismicity quiescence, are observed. This could indicate the existence of two distinct interaction regimes, a first one caused by the destabilisation of active faults by the travelling seismic waves, and a second one due to the remaining static stress perturbation.
Keywords:Seismology  fault interactions  seismic quiescence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号