首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry of selenium: formation of ferroselite and selenium behavior in the vicinity of oxidizing sulfide and uranium deposits
Authors:J Hatten Howard
Abstract:The geochemistry of Se is largely controlled by that of iron, with which Se is closely affiliated in both oxidizing and reducing environments. In aerated waters the Se(IV) oxyanions, HSeO?3 and SeO2?3, are strongly adsorbed by hydrated surfaces of ferric oxides over the pH range 2–8; above pH8 adsorption decreases to complete desorption at pH 11. This adsorption immobilizes Se(IV) in neutral-to-acid waters and increases the range of oxidation potential over which Se(IV) is stable. During experimental aeration of aqueous Fe-S-Se systems, the stability field of Se(IV) is attained and elemental Se is slowly oxidized to this higher valence; oxidation potentials of the Se(VI) stability field were never reached, however, even by continued aeration of an alkaline system. Under reducing conditions, elemental Se either is incorporated within pyrite or forms the mineral ferroselite (FeSe2.Selenium geochemistry is summarized on an Eh-pH diagram, synthesized from equilibrium calculations, experimental work and reported geologic occurrences. A stability field for ferroselite, constructed for a Gibbs free-energy value of ?23.2 kcal/mole, is in accord both with its geologic occurrence and behavior and with conditions under which ferroselite has been synthesized. Traces on this diagram of Eh-pH variation show the behavior of selenium during oxidation of associated iron-sulfide minerals. Such considerations also demonstrate the manner in which selenium migrates, is deposited and is increasingly concentrated in roll-type sandstone uranium deposits, as well as the relative positions of the several forms of selenium within the deposit.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号