首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterisation and Simulation of the Multiscaling Properties of the Energy-Containing Scales of Horizontal Surface-Layer Winds
Authors:Michael K Lauren  Merab Menabde  Alan W Seed  Geoffrey L Austin
Institution:(1) Department of Physics, University of Auckland, Private Bag 92019, New Zealand
Abstract:The multiscaling statistics of atmospheric surface-layer winds at low wavenumbers above farmland and in the lee of a mountain range were examined using a hot-wire and lightweight cup anemometer. It was found that the horizontal velocity spectra could be broken into high and low-wavenumber regimes according to the parameters given by this analysis. The low-wavenumber end of the spectrum possessed a spectral slope parameter that varied between values of 0.8 and 1.35 at the farmland site during the period of the experiment, and the high-wavenumber end – corresponding to the inertial range – possessed a spectral slope slightly greater than -5/3. The larger values for this parameter for the low-wavenumber end appeared to coincide with unstable conditions. In the lee of the mountain range, the low-wavenumber spectral slope parameter was larger still, at 1.45. The low-wavenumber signals over farmland were much less intermittent than inertial-range signals, but in the lee of the mountain range the intermittency increased. From this analysis, it was shown that the statistical properties of the recorded wind signal could be reproduced using a bounded random multiplicative cascade. The model was successfully used to simulate the wind velocity field directly, rather than simulating the energy dissipation field. Since the spectral slope parameter for low wavenumbers appeared to be a function of atmospheric stability, the method presented is a simple way of generating wind signals characteristic of a variety of atmospheric conditions.
Keywords:Atmospheric surface layer  Longitudinal velocity fluctuations  Multifractals  Spectra  Statistical analysis  Turbulence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号