首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The gravity signatures of isostatic,thermally-expanded ridge crests
Authors:WC Pearson  CRB Lister
Institution:1. Amoco Production Co., Security Life Building, Denver, Colorado 80202 U.S.A.;2. Depts. of Geophysics and Oceanography, WB-10, University of Washington, Seattle, Washington 98195 U.S.A.
Abstract:The gravity anomaly has been computed above isostatic, thermally-balanced speading centers that cool by conduction through their top surfaces. Isothermal, and therefore isodense, surfaces were treated as topographic boundaries between layers of different density, and Fourier transforms of power series of the topographic height were used to find the gravity. Convergence requires that the anomaly tend to zero with increasing distance from the ridge crest, and when this is obtained, a crestal positive anomaly is flanked by compensating negatives. Both the magnitude and the spatial width of the anomalies decrease with increasing spreading rate.The ~5 mgal gravity anomalies observed over fast-spreading ridges are matched well by the calculations, but slow-spreading ridges usually have a central rift valley in place of the smooth crest of the idealized isostatic thermal model. The mass deficiency of the valley cancels out the ~40 mgal positive peak that would otherwise occur. The short-wavelength anomaly amplitudes of such ridges are less than 25 mgal and follow the observed local rift valley and flanking ridge topography closely. Excess positive gravity and topography of the flanking ridges suggests compensation of the mass deficiency in the rift valley. However, long-wavelength gravity anomalies such as those observed in the northern Mid-Atlantic cannot be due to topography that is isostatically compensated at a shallow depth. These must be caused either by dynamic forces or by large-scale density differences compensated at much greater depths.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号