首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst
Authors:Yun Chen  Qiming FengYanhai Shao  Guofan ZhangLeming Ou  Yiping Lu
Institution:School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, PR China
Abstract:Extraction of molybdenum and vanadium from ammonia leaching residue (main chemical composition: 2.05% Mo, 0.42% V, 65.6% Al2O3 and 10.7% SiO2) of spent catalyst was investigated by roasting the residue with soda carbonate, followed by hydrometallurgical treatment of the roasted products. In the roasting process, over 91.3% of molybdenum and 90.1% of vanadium could be extracted when a charge containing a sodium carbonate to spent catalyst ratio of 0.15 was roasted at 750 °C for 45 min and the roasted mass was leached with water (liquid to solid ratio of 2) at 80–90 °C for 15 min. After the purification of leach liquor, an extraction solvent consisting of 20 vol.% trialkylamine (N235, commercialized in China) and 10 vol.% secondary octyl alcohol (phase modifier) dissolved in sulfonated kerosene was used to extract molybdenum and vanadium in leach liquor. 10 wt.% ammonia water was used as stripping agent. Adding 30 g/l NH4NO3 to the stripping solution and adjusting the pH to 7–8.5, over 99% of vanadium can be crystallized as ammonium metavanadate. Over 98% of molybdenum can be crystallized as ammonium polymolybdate when pH is between 1.5 and 2.5 (pH is adjusted by HNO3). Ammonium metavanadate and ammonium polymolybdate were calcinated at 500–550 °C, the purity of MoO3 and V2O5 was 99.08% and 98.06% respectively. In the whole process, 88.2% of molybdenum and 87.1% of vanadium could be achieved. The proposed roasting, leaching and separation steps give a feasible alternative for the processing of ammonia leaching residue of spent catalyst and can be applied in the comprehensive utilization of low grade molybdenum ores.
Keywords:Roasting  Purification  Solvent extraction  Molybdenum  Vanadium  Spent catalyst
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号