首页 | 本学科首页   官方微博 | 高级检索  
     检索      


AstroGrid-D: Grid technology for astronomical science
Authors:Harry Enke  Matthias Steinmetz  Hans-Martin Adorf  Alexander Beck-Ratzka  Frank Breitling  Thomas Brüsemeister  Arthur Carlson  Torsten Ensslin  Mikael Högqvist  Iliya Nickelt  Thomas Radke  Alexander Reinefeld  Angelika Reiser  Tobias Scholl  Rainer Spurzem  Jürgen Steinacker  Wolfgang Voges  Joachim Wambsganß  Steve White
Institution:1. Astrophysikalisches Institut Potsdam AIP, Potsdam, Germany;2. Max-Planck-Institut für Astrophysik MPA, Garching, Germany;3. Max-Planck-Institut für Gravitationsphysik (Albert-Einstein Institut) AEI, Potsdam, Germany;4. Astronomisches Recheninstitut am Zentrum für Astronomie Heidelberg ZAH, Heidelberg, Germany;5. Konrad-Zuse-Zentrum für Informationstechnik Berlin ZIB, Berlin, Germany;6. Max-Planck-Institut für extraterrestrische Physik MPE, Garching, Germany;7. Technische Universität München, Institut für Informatik TUM, Garching, Germany;8. National Astronomical Observatories of China, Chinese Academy of Sciences NAOC/CAS, 20A Datun Rd., Chaoyang District, Beijing 100012, China
Abstract:We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4).Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project.We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow.Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks.We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号