首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pliocene volcano-tectonics and paleogeography of the Turkana Basin,Kenya and Ethiopia
Authors:Ronald L Bruhn  Francis H Brown  Patrick N Gathogo  Bereket Haileab
Institution:1. Department of Surface Waters Research and Management, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Switzerland;2. Institute of Biogeochemistry and Pollutant Dynamics, ETH: Swiss Federal Institute of Technology, Switzerland;3. European Center for Geodynamics and Seismology, Luxembourg;4. Department of Geography, Vrije Universiteit Brussel, Belgium;5. Department of Earth Sciences, Royal Museum for Central Africa, Belgium;6. Renard Centre of Marine Geology, Department of Geology and Soil Science, Ghent University, Belgium;7. Institute of Geological Sciences and Oeschger Centre for Climate Change Research, University of Bern, Switzerland
Abstract:The distribution of hominin fossil sites in the Turkana Basin, Kenya is intimately linked to the history of the Omo River, which affected the paleogeography and ecology of the basin since the dawn of the Pliocene. We report new geological data concerning the outlet channel of the Omo River between earliest Pliocene and final closure of the Turkana Basin drainage system in the latest Pliocene to earliest Quaternary. Throughout most of the Pliocene the Omo River entered the Turkana Basin from its source in the highlands of Ethiopia and exited the eastern margin of the basin to discharge into the Lamu embayment along the coast of the Indian Ocean. During the earliest Pliocene the river’s outlet was located in the northern part of the basin, where a remnant outlet channel is preserved in basalts that pre-date eruption of the Gombe flood basalt between 4.05 and 3.95 Ma. The outlet channel was faulted down to the west prior to 4.05 Ma, forming a natural dam behind which Lake Lonyumun developed. Lake Lonyumun was drained between 3.95 and 3.9 Ma when a new outlet channel formed north of Loiyangalani in the southeastern margin of the Turkana Basin. That outlet was blocked by Lenderit Basalt lava flows between 2.2 and 2.0 Ma. Faulting that initiated either during or shortly after eruption of the Lenderit Basalt closed the depression that is occupied by modern Lake Turkana to sediment and water.Several large shield volcanoes formed east of the Turkana Basin beginning by 2.5–3.0 Ma, volcanism overlapping in time, but probably migrating eastward from Mount Kulal on the eastern edge of the basin to Mount Marsabit located at the eastern edge of the Chalbi Desert. The mass of the volcanic rocks loaded and depressed the lithosphere, enhancing subsidence in a shallow southeast trending depression that overlay the Cretaceous and Paleogene (?) Anza Rift. Subsidence in this flexural depression guided the course of the Omo River towards the Indian Ocean, and also localized accumulations of lava along the margins of the shield volcanoes. Lava flows at Mount Marsabit extended across the Omo River Valley after 1.8–2.0 Ma based on estimated ages of fossils in lacustrine and terrestrial deposits, and possibly by as early as 2.5 ± 0.3 Ma based on dating of a lava flow. During the enhanced precipitation in latest Pleistocene and earliest Holocene (11–9.5 ka) this flexural depression became the site of Lake Chalbi, which was separated from Lake Turkana by a tectonically controlled drainage divide.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号