首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia
Authors:Louise E Cullen  Pauline F Grierson
Institution:(1) Ecosystems Research Group, School of Plant Biology M090, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
Abstract:We investigated the dendroclimatic potential of stable carbon (δ13C) and oxygen (δ18O) abundances in tree rings of Callitris columellaris F. Muell. Tree-ring chronologies were constructed from the central Pilbara, north-western Australia and span 1919–1999. Variation in δ18O was more strongly related to climate than δ13C; ecological and physiological factors may have dampened the climate signal in the δ13C chronology. Tree-ring δ18O was most strongly correlated with relative humidity (RH) and rainfall (r = −0.36 and −0.39) of the wettest months of the summer period, January and February. The correlation with RH reflects its effect on evaporative enrichment of leaf water. However, tree-ring δ18O may also partly reflect the variability in 18O signatures of rainfall, which are influenced by the amount of rainfall and atmospheric humidity. From the δ18O chronology, we inferred that from 1919 to 1955 summers were relatively dry and warm, but since 1955, summers in the Pilbara region have become increasingly cooler and more humid. Since 1980, conditions have been the wettest and coolest of the last 80 years. These inferred changes in climate correspond to a measured increase in rainfall since 1980 in north-western Australia associated with a greater intensity of tropical cyclones. We conclude that δ18O abundances in tree rings of C. columellaris have significant potential for reconstructing the climate of semi-arid Australia, a region for which observational climate records are sparse.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号