首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shoshonitic lamprophyre dykes and their relation to mesothermal Au---Sb veins at Hillgrove, New South Wales, Australia
Authors:PM Ashley  NDJ Cook  RL Hill  AJR Kent
Institution:

a Department of Geology and Geophysics, University of New England, Armidale, NSW 2351, Australia

b New England Antimony Mines NL, Hillgrove, via Armidale, NSW 2350, Australia

c Research School of Earth Sciences, Australian National University, P.O. Box 4, Canberra, ACT 2601, Australia

Abstract:The Hillgrove mineral field, in the southern part of the New England Orogen of northeastern New South Wales, Australia, contains numerous mesothermal Au---Sb vein systems. Calc-alkaline (shoshonitic) lamprophyre (CAL) dykes are also associated with mineralisation with dilational lode structures acting as conduits for dyke intrusion, which has occurred before and after major quartz-stibnite veining. Dykes include minette and vogesite compositions and were emplaced in the late Permian (247–255 Ma), at the same time as regionally extensive I-type magmatism in the New England Orogen. Least-altered dykes are enriched in Mg, K, Ba, Rb, Sr, Zr, Th, Cr and Ni relative to I-type intrusives although chemical affinities are evident between lamprophyres and the more mafic members of the high-K Moonbi Plutonic Suite.

Hillgrove lamprophyres are commonly enriched in Sb, As, Hg, Au, W and Bi with respect to average CAL compositions. Evidence indicates this is most likely due to contamination of magma during intrusion through mineralised structures, rather than a primary magmatic feature. Partially resorbed xenocrystic stibnite occurs in dykes which have intruded lode structures, probably facilitated by the low melting point of stibnite (550°C) and its incorporation into the magma. Carbon and oxygen isotopic data from carbonates in least-altered, post-lode lamprophyres are indistinguishable from carbonate in altered dykes and veins, implying that hydrothermal interaction continued after dyke intrusion. Although it is unlikely that lamprophyre dykes have been a direct source for mineralisation at Hillgrove, the close temporal and spatial relation of dykes, mesothermal Au---Sb veins and I-type intrusions are interpreted to be manifestations of the post-collisional setting and influx of mantle-derived heat and partial melts into the New England Orogen during the late Permian.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号